There are two popular versions of Python (2.7 and 3.5);
Ide \(\rightarrow\) Pycharm, Netbeans, Eclipse etc, I suggest Spyder (similar to Rstudio);
Jupyter Notebook \(\rightarrow\) web application to create and share documents (code, formulas, text, etc);
Anaconda \(\rightarrow\) contains R, Python, various IDE, Anaconda navigator (GUI), Anaconda Prompt and Jupyter Notebook.
Numpy \(\rightarrow\) array
Scipy \(\rightarrow\) math (https://docs.scipy.org/doc/scipy-0.18.1/reference/index.html)
Pandas \(\rightarrow\) dataframes (https://pandas.pydata.org/pandas-docs/stable/)
Matplotlib \(\rightarrow\) plot (https://matplotlib.org/)
Seaborn \(\rightarrow\) plot (https://seaborn.pydata.org/)
scikit learn \(\rightarrow\) Classification, Regression, Clustering etc (https://scikit-learn.org/stable/tutorial/index.html)
statmodels \(\rightarrow\) Models (http://www.statsmodels.org/devel/index.html)
In both cases, it is useful to create an enviroments:
and then install packages into yourenvname.