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Permutation approach exploiting dependence structure of the data.

Insert data-driven con�dence envelopes without falling into double dipping.

De�nition of  in the fMRI data framework: region with high proportion of
actived voxels guaranteed.

Python implementation, which is used a lot by neuroscientists.

The paper is fully reproducible, which helps me to follow perfectly the
computational analysis.
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Goeman (2011): parametric approach simultaneous for each set .

BUT... computationally intensive  not suitable for high dimensional data, e.g.,
fMRI data!

Mejier (2019): shortcut for high-dimensional data.

BUT... remains parametric  do not capture the dependence structure of fMRI
data.
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Hemerik (2019): �xes Meinshausen (2006) approach, i.e., critical vectors
(templates) independent from the data

BUT.. not simultaneous across all possible set of hypothesis, i.e., again  is
composed by the �rst  smallest p-values  no useful for resolving the spatial
speci�city paradox.

Blanchard (2020): generic formulation (both parametric and permutation-
based) simultaneous across .

BUT.. the critical vector are Simes-based, i.e., linear shape  do not capture the
shape of the null distribution, sensitive to the smallest p-values.

Finally... Notip! 
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FDP upper bound
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FDP upper bound

some templates:

parametric Simes-based  

permutation Simes-based  

permutation learned template  

V t(S) = min
1≤k≤|S|∧kmax

{∑
i∈S

1{pi(X) ≥ tk} + k − 1}

→ tk =
αk

m

→ tk =
λαk

m

→ tb
k

= inf{x : b/B ≤ Fpk
(x)}
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Question 1

However, there are other templates beyond the Simes-based ones (Blanchard
(2008), Hemerik (2019), ...). In particular:

Beta family   where  is the cumulative
distribution function of .

→ tk = inf{x : λα ≤ Fk(x)} Fk(x)
Beta(k, m + 1 − k)
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However, it is not straighfoward comparing families of templates  not uniform
improvement.

Some families improves FDP bounds for some  and worse bounds for other .

Size of the cluster

Structure of the null distribution

For example, in your application the learned template seems to outperform the
calibrated Simes in the case of large cluster (like the sumsome method from Vesely
(2021)). Probably due to the conservativness of simes-based templates for the
smallest p-values.
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Questions 2-3 (again about templates but in
fMRI)

For that, Hemerik (2019) proposed a shifted version of the Simes-based family:

and Andreella (2022) suggested it for dealing large clusters.

tk =
(k − δ)λ
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Question 4

Resting-state data  null data in the fMRI framework (no BOLD activity).→
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There is probably di�culty in doing this analysis given the computational cost of
Notip in learning the template (?). 39 / 42



Recap questions

Question 1: Did you try di�erent types of templates, not Simes-based,
in your simulations?

Question 2: Did you try the shifted version using Neurovault data?

Question 3: How do you think the cluster width, signal strength, and
conservative/anti-conservative structure of the null distribution a�ect
the family choice in a given fMRI?

Question 4: How do you think your template might react using resting
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