VALID DOUBLE-DIPPING FOR FMRI CLUSTER ANALYSIS VIA PERMUTATION-BASED SELECTIVE INFERENCE

Angela Andreella¹, Jesse Hemerik², Livio Finos³, Wouter Weeda⁴, and Jelle Goeman⁵

¹DEPARTMENT OF ECONOMICS, CA' FOSCARI UNIVERSITY OF VENICE ²BIOMETRIS, WAGENINGEN UNIVERSITY AND RESEARCH ³DEPARTMENT OF DEVELOPMENTAL PSYCHOLOGY AND SOCIALISATION, UNIVERSITY OF PADUA ⁴DEPARTMENT OF PSYCHOLOGY, LEIDEN UNIVERSITY ⁵BIOMEDICAL DATA SCIENCES, LEIDEN UNIVERSITY MEDICAL CENTER

EMPG - 7 SEPTEMBER 2022

fMRI is the most used technology to study human cognition's neural underpinnings. The brain activation is measured as changes in blood flow (BOLD) under a sequence of **stimuli**.

- **Response**: Brain activity measured for each **voxel** → about 200,000 response activation to test.
- Question: Which regions respond differently to different stimuli? → is the region active?
- So, We have a test statistic:
 - for each voxel → H_v: voxel v is not active;
 - for each set of voxels →
 H_S: the set of voxel S is not active.

MULTIPLE TESTING PROBLEM

In a nutshell:

- When we test a single null hypothesis $H_0 \rightarrow$ the probability to reject H_0 when is true equals α (e.g., 0.05).
- If we test m > 1 null hypothesis, the probability to reject at least one hypothesis across m hypothesis equals 1 − (1 − α)^m

If we want to infer at voxel level \rightarrow 200, 000 statistical tests $\rightarrow \alpha = 0.05/200, 000$ (i.e., Bonferroni correction) \rightarrow very low power to detect activation.

So, we can infer at level of set of voxels \rightarrow 3 statistical tests $\rightarrow \alpha = 0.05/3$ (i.e., Bonferroni correction) \rightarrow we gain power.

In fMRI data analysis, the most widely used method for locating brain activity is **cluster-extent based thresholding**¹.

Problems:

If we reject the null hypothesis we can only say:

Spatial Specificity paradox $^2 \rightarrow$ The larger the cluster, the weaker the finding!

²Woo, C. et al. (2014).

Inferring inside data-driven clusters leads to biased results!
 →
 Double-dipping

Solution:

- Selective inference approach: you can make post-hoc selection and follow-up inference (i.e., double-dipping);
- Permutation-based approach: account for the unknown dependence structure of voxels

Permutation-based All-Resolution Inference (**pARI**) \rightarrow computes the lower bounds for the number of true active voxels inside each clusters (after seeing the data, changing the cluster-wise threshold, etc.). Let consider B collection of m voxel activation to test.

- **Hypothesis:** H_1, \ldots, H_m ;
- **True Discoveries:** $TD \subset \{1, \ldots, m\}$;
- **Cluster:** $S \subset \{1, ..., m\}$ selected hypothesis;
- **True Discoveries in S:** $|TD \cap S| \subset \{1, \ldots, m\}$.

We want to infer on $\overline{TD(S)} = |TD \cap S| \rightarrow \text{compute the lower bound}$ $\overline{TD}(S) \rightarrow \text{we can say "in S at least } \overline{TD}(S)$ are truly active". Two ingredients:

Closed testing procedure for controlling the familywise error rate³:

 $Pr(TD(S) \ge T\overline{D}(S) \text{ for each } S \in B) \ge 1 - \alpha$

■ Local test used in the closed testing procedure → permutation-based tests.

Closed testing rejects any H_i , if all possible intersection hypotheses involving H_i are rejected by using valid local level α tests.

³Marcus, E. et al. (1976).

```
install.packages("pARI")
library(pARI)
```

fMRI framework:

pARIbrain(copes, thr, mask, alpha, ...)

General framework:

pARI(data, ix, alpha, test.type, ...)

where **ix** is the **set** *S* of interest (i.e., vector of hypotheses indices).

We analyzed the **Auditory data** collected by Pernet et al. (2015), i.e, people listening vocal and non-vocal sounds.

Group analysis on 140 subjects of the Vocal > Non-vocal **contrast** by the one sample t-test flipping the sign of 140 voxel-wise contrasts maps.

Cluster	Threshold	Size	% active TD(S)		P-Values
S	t	S			p _{FWER}
			Perm. Simes	Param. Simes	
Right STG/PT HG/IFG/T	3.2	11683	92.36%	84.98%	< 0.0001
Right STG/PT HG/IFG/T	4	8875	99.54%	98.5%	-
Right IFG	4	422	91.47%	83.18%	_
Right T	4	292	85.96%	64.04%	_
Right T	4	15	13.33%	о%	_

The permutation-based ARI:

- flexible, mild and post-hoc → You can choose the features set as many time as you want!
- resolves the spatial specificity paradox of cluster fMRI data analysis;
- accounts for the dependence structure of the data;
- makes no assumptions on the null distribution of the p-values → only exchangeability;
- the power does not depend on the number of features sets tested.