Quot capita, tot sententiae: Don't Forget to Use Anatomical Features into the Alignment of fMRI Data

Andreella, A. ${ }^{1}$, Haxby, J. V. ${ }^{3}$, Calcagnì, A. ${ }^{2}$, Finos, L. ${ }^{2}$

${ }^{1}$ Department of Statistical Sciences, University of Padua, Italy
${ }^{2}$ Department of Developmental Psychology and Socialisation, University of Padua, Italy
${ }^{3}$ Department of Psychological and Brain Sciences, Dartmouth College, NH, United States

February 8, 2020

Introduction

Multi-subjects fMRI studies permit to compare studies across subjects, to generalize and to validate the results.

The anatomical and functional structure of brains vary across subjects even in response to identical sensory inputs.

"Quot capita, tot sententiae" ${ }^{1}$: ALIGNMENT STEP

- Anatomical Alignment \rightarrow Talairach space ${ }^{2}$;
- Functional Alignment \rightarrow Hyperalignment ${ }^{3}$.
${ }^{1}$ Terenzio, Phormio, 161 a.C.
${ }^{2}$ Talairach, J. J, and P. Tournoux. (1988).
${ }^{3}$ Haxby, J. V., et al. (2011).

Figure: Haxby, J. V., et al. (2011). "A common high-dimensional model of the representational space in human ventral temporal cortex." Neuron, 72 (1): 404-16.

Misalignment fMRI problem

Individual subject

Misalignment fMRI problem

Each subject i is represented by a matrix $X_{i} \in \mathbb{R}^{n \times v}$:

- the rows represent the response stimuli activation of voxels
\longrightarrow the stimuli are time synchronized
- the columns represent the time series of activation for each v voxel
\longrightarrow not assumed to be in correspondence across N subjects.

The neural actives in different brains are noisy rotations of a common space.

The Procrustes method ${ }^{4}$ uses similarity transformation to match matrices onto the reference one as close as possible.

$$
\min _{R_{i}} \sum_{i=1}^{N}\left\|X_{i}-M R^{\top}\right\|_{F}^{2} \quad \text { subject to } \quad R^{\top} R=I_{v}
$$

IN A NUTSHELL

Find the best orthogonal matrix-transformation that MINIMIZE THE DISTANCE between X_{i} 's (guest) and M (bed)

[^0] Procrustes problem. Psychometrika, 31 (1): 1-10

Procrustes Method

Our method

Hyperalignment is a sequential approach of the Procrustes solution \rightarrow No statistical approach and optimization criteria.

We rephrase it as statistical model:

$$
X_{i}=M R_{i}+E_{i} \quad \vec{E}_{i} \sim \mathcal{N}_{n v}(0, \Sigma)
$$

We think that also the anatomical features are important!

\pm

Use prior distribution (Fisher Von Mises ${ }^{5}$) for R_{i} capturing the 3-dimensional coordinates euclidean distance between voxels.

$$
f\left(R_{i}\right) \propto \exp \left(k \operatorname{tr}\left(\mathrm{Q}^{\top} R_{i}\right)\right)
$$

${ }^{5}$ Downs, T. D. (1972). Orientation statistics. Biometrika, 59 (3): 665-676

Our method

The magic matrix R_{i} performs a linear
combination of voxel activations to create
the new image. $\quad \begin{aligned} & \text { Combine } \\ & \text { CLOSER }\end{aligned}$
Thanks to the prior distribution, we can exploits this information defining its location parameter Q as \ldots

SIMILARITY EUCLIDEAN MATRIX

- We align the images of the Ventral Temporal Cortex of 10 subjects watching static, grey-scale images of faces and objects;
- The Multi-class Linear Support Vector Machine is used as classifier with leave one out subject cross-validation;
- We permute 100 times the order of the subjects.

Using the anatomical alignment the accuracy equals to 0.359 .

Faces and Objects Data

The Procrustes method with spatial prior:

- doesn't depend on the order of the subjects as Hyperalignment \rightarrow low replicability;
- returns a unique solution of the rotation matrix having topological/anatomical meaning \rightarrow rotation matrices are more understandable;
- improves the between-subjects classification, the functional alignment captures the fine-grained patterns of neural activity;
- leads to a smoother map of classifier coefficients.

You can find the algorithm on GitHub: angeella/priorGPA.

ADDITIONAL MATERIAL

Algorithm

Require: $X_{i}, k, Q, \mathrm{~T}, \operatorname{maxIt}$,

$$
\left.\begin{array}{ll}
\text { 1: } M \leftarrow \bar{X} & \triangleright \text { Reference }=\text { global mean } \\
\text { 2: count } \leftarrow 0 & \\
\text { 3: dist } \leftarrow \operatorname{Inf} & \\
\text { 4: while dist }>\mathrm{T} \& \text { count }<\operatorname{maxIt} \text { do } & \\
\text { 5: } & \text { for } i=1 \text { to } N \text { do } \\
\text { 6: } & U, \Sigma, V \leftarrow \operatorname{SVD}\left(X_{i}^{\top} M+k \cdot Q\right) \\
\text { 7: } & \hat{R}_{i} \leftarrow U V^{\top} \\
\text { 8: } & \hat{X}_{i} \leftarrow X_{i} \hat{R}_{i} \\
\text { 9: } & \text { end for }
\end{array}\right)
$$

14: end while

15: return \hat{X}_{i}
$\triangleright \forall i=1, \ldots, N$

Faces and Object Dataset

Raiders Dataset

Auditory Data

Auditory data

Auditory data

Auditory data

[^0]: ${ }^{4}$ Schonemann, P. H. (1966). A generalized solution of the orthogonal

